Improved GMP-compliant multi-dose production and quality control of 6-[18F]fluoro-L-DOPA
نویسندگان
چکیده
Background 6-[18F]Fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) is a frequently used radiopharmaceutical for detecting neuroendocrine and brain tumors and for the differential diagnosis of Parkinson's disease. To meet the demand for FDOPA, a high-yield GMP-compliant production method is required. Therefore, this study aimed to improve the FDOPA production and quality control procedures to enable distribution of the radiopharmaceutical over distances.FDOPA was prepared by electrophilic fluorination of the trimethylstannyl precursor with [18F]F2, produced from [18O]2 via the double-shoot approach, leading to FDOPA with higher specific activity as compared to FDOPA which was synthesized, using [18F]F2 produced from 20Ne, leading to FDOPA with a lower specific activity. The quality control of the product was performed using a validated UPLC system and compared with quality control with a conventional HPLC system. Impurities were identified using UPLC-MS. Results The [18O]2 double-shoot radionuclide production method yielded significantly more [18F]F2 with less carrier F2 than the conventional method starting from 20Ne. After adjustment of radiolabeling parameters substantially higher amounts of FDOPA with higher specific activity could be obtained. Quality control by UPLC was much faster and detected more side-products than HPLC. UPLC-MS showed that the most important side-product was FDOPA-quinone, rather than 6-hydroxydopa as suggested by the European Pharmacopoeia. Conclusion The production and quality control of FDOPA were significantly improved by introducing the [18O]2 double-shoot radionuclide production method, and product analysis by UPLC, respectively. As a result, FDOPA is now routinely available for clinical practice and for distribution over distances.
منابع مشابه
Pancreatic uptake and radiation dosimetry of 6-[18F]fluoro-L-DOPA from PET imaging studies in infants with congenital hyperinsulinism
METHODS After injecting 25.6 ± 8.8 MBq (0.7 ± 0.2 mCi) of 18F-Fluoro-L-DOPA intravenously, three static PET scans were acquired at 20, 30, and 40 min post injection in 3-D mode on 10 patients (6 male, 4 female) with congenital hyperinsulinism. Regions of interest (ROIs) were drawn over several organs visible in the reconstructed PET/CT images and time activity curves (TACs) were generated. Resi...
متن کاملTime profile of cerebral [18F]6-fluoro-L-DOPA metabolites in nonhuman primate: implications for the kinetics of therapeutic L-DOPA.
At least two rates of dopamine turnover have been demonstrated in vivo, including a slow turnover rate that is associated with synaptic vesicles, and a faster rate that leads to rapid production of dopamine metabolites. Similarly, [18F]6-fluorodopamine (FDA), the decarboxylation product of the PET tracer [18F]6-fluoro-L-DOPA (FDOPA), may have multiple turnover rates which could substantially af...
متن کاملDopa decarboxylase activity of the living human brain.
Monoaminergic neurons use dopa decarboxylase (DDC; aromatic-L-amino-acid carboxy-lyase, EC 4.1.1.28) to form dopamine from L-3,4-dihydroxyphenylalanine (L-dopa). We measured regional dopa decarboxylase activity in brains of six healthy volunteers with 6-[18F]fluoro-L-dopa and positron emission tomography. We calculated the enzyme activity, relative to its Km, with a kinetic model that yielded t...
متن کاملIn vivo Assessment of the Human Nigrostriatal Dopaminergic System Using Positron Emission Tomography
Direct biochemical functional analysis of implanted cells in human brain during life is not possible. However, one can obtain specific regional cerebral biochemical information using special radiotracer techniques and positron emission tomography (PET). The information carriers are tracer substances, labelled with short-lived positron emitting radionuclides (e.g. C or SF), which, after administ...
متن کاملExperimental production and initial imaging of [18F]-14-Fluoro-6-thia-heptadecanoic acid ([18F]-FTHA) for myocardial performance [Persian]
Introduction: [18F]-6-thia-14-fluoro-heptadecanoic acid 3b, a free fatty acid, has been used in myocardial PET imaging. In order to establish an automated synthesis module for routine production in the country, a study performed for optimization of the production conditions as well as making modifications. Methods: [18F] Benzyl-14-Fluoro-6-thia-heptadecanoate 2b was prepared in no-carrier...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2017